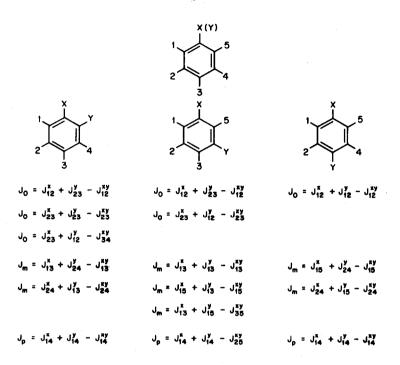
Tetrahedron Letters No.51, pp. 5211-5216, 1967. Pergamon Press Ltd. Printed in Great Britain.

NMR SPECTRAL PARAMETERS OF <u>ORTHO</u>-DISUBSTITUTED BENZENES. INVESTIGATION OF THE ADDITIVITY OF SUBSTITUENT EFFECTS ON THE PROTON-PROTON COUPLING CONSTANTS.


S. Castellano and R. Kostelnik Mellon Institute, Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 (Received in USA 14 August 1967)

In recent communications (1,2,3) accurate num spectral parameters of several monosubstituted bensenes have been reported and the short range effects of the substituent on the proton-proton coupling constants has been repeatedly emphasized. The absence of correlations between chemical shifts and coupling constants (3) has been interpreted as evidence of the minor influence exerted by mesomeric effects on the magnitudes of the latter parameters. It follows that the variations of these proton-proton coupling constants are <u>primarily</u> determined by effects of the inductive type (1,3). On this basis, the effects of the substituents on the proton-proton coupling constants of disubstituted benzenes would be expected to show additive properties.

An additivity relation for the coupling constants between <u>meta</u> protons in <u>para</u>-disubstituted benzenes has already been proposed by Dischler (4), but the lack of data on monosubstituted benzenes (the knowledge of precise values of the coupling constants in benzene itself is not essential) prevented a thorough investigation of the consistency of that relation. If substituent effects are indeed additive, sets of equations can be established connecting the parameters of benzene (J_o, J_m, J_p) and those of the mono- (J_{ij}^x, J_{kl}^y) and disubstituted benzenes (J_{mn}^{xy}) as shown in Fig. 1 where the labelling of the aromatic protons used in this paper is also given. If experimental data on mono- and disubstituted benzenes are available, and the additivity scheme holds, insertion of these data in the right hand side of the equations of Fig. 1 should yield values of J_o, J_m , J_p constant for the whole series of compounds. Constancy is

5211

also required of the values of J_0 determined from compounds with the same substituents in <u>ortho</u> and <u>meta</u> positions; and of the values of J_m determined from <u>ortho</u>, <u>meta</u> and <u>para</u>-disubstituted benzenes. This treatment of the data offers the opportunity of deducing spectral parameters of benzene as accurate as those obtained experimentally for the mono- and disubstituted compounds.

To check the above additivity schemes we have analyzed the new spectra of 13 orthodisubstituted benzenes (7 as both neat liquids and 10% solutions in $CCl_{1,1}$); some of these compounds had been studied before (5,6), but an accuracy of the spectral parameters greater than that reported in the literature was needed for our purpose. The results of our analyses, which were performed with the same procedures and methods previously described (2,3), are summarized in Table I. The calculated probable error for each of the parameters was always smaller than 0.01 cps, but we prefer to adopt a more conservative estimate of $\frac{1}{2}$ 0.05 cps.

Application of the equations given in Figure 1 to the experimental data presented in

				Chamical Shifte	Shifre					C	Counding Constants	. Consta	nta			
×		<u>Solvent</u> ^b		<u> </u>	<u> </u>	H(4)	<u>J(1,2)</u>	<u>J(1,3)</u>	<u>1(1,4)</u>	<u> J(2,3)</u>	J(2,4)	<u> J(3,4)</u>	<u>J(1, X)</u>	J(1.2) J(1.3) J(1.4) J(2.3) J(2.4) J(3.4) J(1.X) J(2.X)	<u>J(3.X)</u>	<u>J(t, X)</u>
4-		Neat	415.329	424°672	409.423	141.027	8.273	1.462	0.242	7.460	1.664	8.014	8.887	410.4	-0.589	6.944
4		cc1,	422.633	472.274	416.918	449.010	6.533	1. 467	0.250	7.525	1.656	566.7	8.574	468.4	-0.614	6.842
81 '		Neat	413.007	427.469	403.234	453.832	8.202	1.419	0.222	7.426	1.653	7.930	8.178	5.112	-0.231	6.402
4-		cc1,	419.493	434.388	409.591	461.270	8.177	1.422	0.256	7.452	1.611	7.890	7.988	5.061	-0.254	6.230
-		Neat	432.091	416.493	416.493	432.09 1	8.064	1.583	0.321	7.486	1.583	8.064				
ç		cc1	44 1. 932	426.582	426.582	44 1. 932	8.040	1.537	0.315	7.449	1.537	8.040				
-		Neat	432.696	419.805	412.203	112.694	8.006	1.526	0.312	7.438	1.548	8.046				
-C1		$cc1_{\rm h}$	442.113	429.386	421.647	452.198	8.007	1.604	0.318	7.432	1.554	8.086				
-61		Neat	428.047	104.004	417.869	418.454	8.051	1.594	0.290	7.398	1.581	8.176				
Ģ		cc1	432.762	405.329	424.083	416.917	7.988	1.584	0.305	7.396	1.519	8.188				
5 7		ccı	451.174	450.119	444.389	468.394	8.106	1.336	0.336	7.403	1.543	8.153				
-Br		Neat	h43.608	415.741	415.741	443.608	7.995	1.547	0.265	114.7	1.547	7.995				
-Br		сс1, СС1,	452.622	42.424	424.747	452.622	7.972	1.504	0.302	7.467	1.504	7.972				
-Br		Neat	444.672	419.767	164.791	459.295	7.966	1.544	0.267	7.375	1.607	7.928				
-Br		ccı	453.095	427.487	414.802	467.593	7.981	1.533	0.292	7.367	1.623	7.935				
Ļ		ับว่	468.543	417.537	417.537	468.543	8.021	1.488	0.299	7.314	1.488	8.021				
0 4		Me_CO	489.453	480.345	480.345	489.453	8. 12 3	1.319	0.341	1:731	1.319	8.123				
ġ		Me_CO	199.004	691.604	694.604	199 . 00†	7.978	1.552	0.260	7.344	1.552	7.978				
Ю		cci	425.816	451.716	416.190	482.852	8.497	1.321	0.392	7.156	1.665	8.543	+1	±0.400		
-c(cH ₃) ₃	-c(cH ₃) ₃	cc1	418.348	1416.796	1116.796	418.348	8.105	1.591	0.273	7.002	1.591	8.105				

^a All data in cps.; chemical shifts are referred to TWS used as an internal standard; $v_0 = 60$ Mcps.

b Concentration of the solutions: 10% w/w.

NMR Spectral Parameters of \underline{ortho} -Disubstituted Benzenes $(C_{6}B_{\mu}^{4}XY)^{a}$

TABLE I

this communication and previous reports * (2,3) furnished results in good agreement with the additivity scheme in all cases except four $(X, Y: \#-C(CH_3)_3, -C(CH_3)_3\#-OH, -NO_2\#-NO_2, -NO_2\#-C1, NO_2\#)$ whose anomalous behavior will be considered later. The treatment of this data furnished 48 values of J_0 , 32 values of J_m and 16 values of J_p whose averages, standard and maximum (in bracket) deviations we have reported in Table II, (entry 1). Also included in Table II are the results of a similar treatment of data in the literature: on 6 meta-disubstituted derivatives quoted in a recent review (5) and elsewhere (7), yielding 12, 13, and 6 calculated values of J_0 , J_m , and J_p respectively, (entry 2); on the 27 para-disubstituted derivatives analyzed by Dischler (4) yielding 27, 54, and 27 values of J_0 , J_m and J_p respectively, (entry 3); on 43 para -disubstituted derivatives quoted in Bothner-By's review (5), yielding 43, 56 ** and 43 values of J_0 , J_m and J_p respectively, (entry 4). Finally we have reported in Table II the values of J_0 , J_m and J_p determined experimentally in two ways (8,9), (entries 5 and 6) or derived from a different statistical treatment of the parameters of monosubstituted benzenes^{***} (1C), (entry 7).

TABLE II

Experimental and Calculated Values of the Proton-Proton Coupling Constants of Benzene (in cps.)

Entry	O	<u>m</u>	P	References
1	7.52 + 0.07 [0.15]	1.31 + 0.08 [0.20]	0.65 ± 0.02 [0.06]	this work
2	7.55 *- n.22 (n.25)	1.42 + 21.56 [21.32]	21.579 +- 21.266 [21.20])	うつ
ゔ	7.51 TO.12 (O.27)	1.39 - 0.21 (0.41)	0.69 - 0.11 (0.28)	÷
4	7.56 ± 0.13 [0.28]	1.39 [±] 0.12 [0.37]	0.64 [±] 0.08 [0.18]	5
ቻ	不死	2.40	S. S.	്
6	7.56 ± 0.04	1.38 [±] 0.04	0.69 [±] 0.04	9
7	7.50 ± 0.05	1.35 ± 0.05	0.66 ± 0.05	10

In all cases the agreement between experimental and calculated average values of $J_{o'} J_{m}$ and J_{p} is excellent. Standard and maximum deviations lie within the expected limits of accuracy for the values derived from <u>ortho</u> and <u>meta</u> compounds as well; larger deviations are found for the values derived from the <u>para</u> compounds reflecting the uncertainty ($^{\pm}$ 0.1 cps) in the determination of the corresponding <u>meta</u> coupling constants ^{*****}. The values of J_{o} are, however, quite reliable for this series of compounds. Large departures from additivity, due to mesomeric interactions of the two substituents, should have been particularly noticeable in this series of compounds yielding an averaged value of J_{o} smaller than in benzene. All the

results presented in Table II seem, therefore, to verify that the substituent effect on the proton-proton coupling constants are indeed additive and can be calculated, within the limits of accuracy of the data, from simple group contributions.

We must, however, point out that our experimental results on the <u>ortho</u>-disubstituted benzenes, show that the additivity rule fails in cases of strongly interacting <u>ortho</u> substituents. In Table III are reported the values of J_o calculated for the four compounds whose parameters deviate strongly from the additivity rule.

Calculated Values of J from <u>ortho-di-t-Butylbenzene</u>, <u>ortho-</u> Nitrophenol, <u>ortho</u>-Dinitrobenzene, and <u>ortho</u>-Nitrochlorobenzene

<u> </u>	<u>Y</u>	J as calculated from:		
		J ^{xy} 12	J ^{xy} 23	ј^{жу} 34
-с(сн ₃)3	-C(CH ₃) ₃	7.255	7.796	7.255
-0H	-10	7.139	7.7 1 0	7.216
-NO2	-NO	7.706	7.205	7.706
-01	-NO	7.406	7.624	7.767

We think that these anomalies can be rationalized in terms of variations of bond length and bond angles of the aromatic ring caused by the repulsions of the bulky $-C(CH_3)_3$ groups in <u>ortho-di-t</u>-butylbenzene and by the closure of a six membered ring, through hydrogen bonding, in nitrophenol. Evidence for the occurrence of the chelate is the measured long range coupling constant between the -OH and the aromatic proton in position 2. Such a coupling is not observed in phenol. Smaller variations of J_0 , but with trends similar to that reported for the first two compounds of Table III are also detected in the data derived from the parameters of <u>ortho-</u> diiodobenzene. The variation of J_0 observed in the case of <u>ortho</u>-dinitrobenzene shows a reverse trend and seems to indicate geometrical distortion of the aromatic ring opposite to the ones occurring in the first two compounds. If our interpretation is correct, careful detection of deviations from the additivity rule may prove to be more illuminating than the mere application of the additive scheme itself.

Acknowledgments: We wish to thank Dr. A. A. Bothner-By for reading the text of this manuscript. This work was performed using in part the NMR facility for biomedical studies supported by NIH Grant FR 00292-01.

TABLE III

- * The spectral parameters of <u>t</u>-butylbenzene (10% w/w in CCl_μ) have not been reported before; they are (in cps. at ν₀ = 60 Mcps.): W(1)= 436.804; W(2)= 430.390; W(3)=422.700; J(1,2)= 7.961; J(1,3)= 1.164; J(1,4)= 0.570; J(1,5)= 2.180; J(2,3)= 7.399; J(2,4)= 1.554.
- ** J_m was not calculated for those cases in which only averaged or identical values of the <u>meta</u> coupling constants were given.
- *** These values, obtained from least squares correlations of the coupling constants among themselves, are more accurate than those reported in Reference 1.
- **** Many of these spectra of the AA'BB' type are deceptively simple, so that J_{AA}, and J_{BB}, are poorly determined. Furthermore, the values of these two parameters can be easily misassigned.

REFERENCES

- 1. S. Castellano and C. Sun, <u>J. Am. Chem. Soc</u>. <u>88</u>, 4741 (1966).
- 2. S. Castellano, R. Kostelnik and C. Sun, Tetrahedron Letters, in press.
- 3. S. Castellano, C. Sun and R. Kostelnik, Tetrahedron Letters, submitted for publication.
- 4. B. Dischler, Z. Naturforschg. 20a, 888 (1965).

1

- 5. A. A. Bothner-By, Advan.-Magnetic Resonance, 1, 195 (1965) and literature quoted therein.
- 6. W. B. Smith and G. M. Cole, J. Phys. Chem. 69, 4413 (1965).
- 7. D. B. Macdonald, <u>Chem. Comm.</u> <u>14</u>, 686 (1967).
- 8. A. Saupe, Z. Naturforshg. 20a, 572 (1965).
- 9. J. M. Read, Jr., R. E. Mayo and J. H. Goldstein, J. Mol. Spectr. 21, 235 (1966).
- 10. S. Castellano and R. Kostelnik, unpublished results.